Johnstone Laboratory Resource ## **Concentrations of Aqueous Acid and Base Solutions** Many laboratory reagents are commonly supplied as aqueous solutions in "concentrate form" with the concentration provided as a wt%. This situation most commonly arises because of how these reagents are prepared. For instance, no one probably wants an $HCl_{(aq)}$ solution that is specifically at 37 wt% (12.18 M), but this is the highest concentration that is readily obtainable by dissolving $HCl_{(g)}$ in water under ambient conditions. Note that higher concentrations are possible. Below are the molar concentrations of common "concentrated" aqueous reagents whose concentrations are usually specified in wt% along with the densities used to calculate those concentrations. | Reagent | wt% | Density | Molarity | |----------------------------------|-----|---------|----------| | HCI | 37% | 1.18 | 12.2 | | HF | 49% | 1.19 | 28.9 | | HNO ₃ | 70% | 1.41 | 15.6 | | H_3PO_4 | 85% | 1.71 | 14.8 | | HCIO ₄ | 70% | 1.67 | 11.7 | | H_2SO_4 | 98% | 1.84 | 18.4 | | | | | | | NH_3 | 25% | 0.91 | 13.4 | | NH_3 | 28% | 0.90 | 14.5 | | NH_3 | 35% | 0.88 | 18.1 | | | | | | | H ₂ O ₂ ** | 30% | 1.45 | 9.8 | ^{**} Care should be taken with all of these concentrations because the wt% of these reagents as supplied is often approximate. Particular care should be taken with H_2O_2 because it decomposes slowly over time.